Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.

Identifieur interne : 001837 ( Main/Exploration ); précédent : 001836; suivant : 001838

Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.

Auteurs : Xueqing Song [Japon] ; Xiang Yu [Japon] ; Chiaki Hori [Japon] ; Taku Demura [Japon] ; Misato Ohtani [Japon] ; Qiang Zhuge [République populaire de Chine]

Source :

RBID : pubmed:27242819

Abstract

Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes.

DOI: 10.3389/fpls.2016.00612
PubMed: 27242819
PubMed Central: PMC4860416


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.</title>
<author>
<name sortKey="Song, Xueqing" sort="Song, Xueqing" uniqKey="Song X" first="Xueqing" last="Song">Xueqing Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry UniversityNanjing, China; Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry UniversityNanjing, China; Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource ScienceYokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiang" sort="Yu, Xiang" uniqKey="Yu X" first="Xiang" last="Yu">Xiang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource Science Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hori, Chiaki" sort="Hori, Chiaki" uniqKey="Hori C" first="Chiaki" last="Hori">Chiaki Hori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource Science Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma</wicri:regionArea>
<wicri:noRegion>Nara Institute of Science and TechnologyIkoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma</wicri:regionArea>
<wicri:noRegion>Nara Institute of Science and TechnologyIkoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry University Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry University Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing Forestry University Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27242819</idno>
<idno type="pmid">27242819</idno>
<idno type="doi">10.3389/fpls.2016.00612</idno>
<idno type="pmc">PMC4860416</idno>
<idno type="wicri:Area/Main/Corpus">001768</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001768</idno>
<idno type="wicri:Area/Main/Curation">001768</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001768</idno>
<idno type="wicri:Area/Main/Exploration">001768</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.</title>
<author>
<name sortKey="Song, Xueqing" sort="Song, Xueqing" uniqKey="Song X" first="Xueqing" last="Song">Xueqing Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry UniversityNanjing, China; Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry UniversityNanjing, China; Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource ScienceYokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiang" sort="Yu, Xiang" uniqKey="Yu X" first="Xiang" last="Yu">Xiang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource Science Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hori, Chiaki" sort="Hori, Chiaki" uniqKey="Hori C" first="Chiaki" last="Hori">Chiaki Hori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama</wicri:regionArea>
<wicri:noRegion>RIKEN Center for Sustainable Resource Science Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma</wicri:regionArea>
<wicri:noRegion>Nara Institute of Science and TechnologyIkoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma</wicri:regionArea>
<wicri:noRegion>Nara Institute of Science and TechnologyIkoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry University Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry University Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing Forestry University Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27242819</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>612</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00612</ELocationID>
<Abstract>
<AbstractText>Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Xueqing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry UniversityNanjing, China; Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hori</LastName>
<ForeName>Chiaki</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science Yokohama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Demura</LastName>
<ForeName>Taku</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohtani</LastName>
<ForeName>Misato</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan; Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuge</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, Ministry of Education, Nanjing Forestry University Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">SnRK2</Keyword>
<Keyword MajorTopicYN="N">metabolism</Keyword>
<Keyword MajorTopicYN="N">overexpression</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">salt stress</Keyword>
<Keyword MajorTopicYN="N">salt tolerance</Keyword>
<Keyword MajorTopicYN="N">transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27242819</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00612</ArticleId>
<ArticleId IdType="pmc">PMC4860416</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 30;5(12):e16041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Mar;63(4):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17103012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 May;51(5):842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20375108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):975-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Apr 15;419(2):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Apr 09;6(270):rs8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21259-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jun;25(6):2056-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23771891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 19;106(20):8380-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Dec;50(12 ):2123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):935-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17461784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Feb;27(4):743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7727751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Nov;51(11):1821-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):1203-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2014 May;35(5):567-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10 ):3170-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Mar;61(3):683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 28;8:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Dec;27(12):1861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18797872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jun 3;264(5164):1452-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8197457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 May 04;15:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24886148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 1;279(40):41758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21765163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1473-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Mar;50(3):447-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1163-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1551-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23868073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(3):354-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Apr;64(7):2063-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jun 3;264(5164):1448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7910981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:651-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jul;50(7):1345-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541597</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Song, Xueqing" sort="Song, Xueqing" uniqKey="Song X" first="Xueqing" last="Song">Xueqing Song</name>
</noRegion>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
<name sortKey="Hori, Chiaki" sort="Hori, Chiaki" uniqKey="Hori C" first="Chiaki" last="Hori">Chiaki Hori</name>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
<name sortKey="Yu, Xiang" sort="Yu, Xiang" uniqKey="Yu X" first="Xiang" last="Yu">Xiang Yu</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001837 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001837 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27242819
   |texte=   Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27242819" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020